Improving Software Reliability Growth Model Selection Ranking Using Particle Swarm Optimization

نویسندگان

  • DAYANG N. A. JAWAWI
  • SHAHLIZA ABDUL HALIM
چکیده

Reliability of software always related to software failures and a number of software reliability growth models (SRGMs) have been proposed past few decades to predict software reliability. Different characteristics of SRGM leading to the study and practices of SRGM selection for different domains. Appropriate model must be chosen for suitable domain in order to predict the occurrence of the software failures accurately then help to estimate the overall cost of the project and delivery time. In this paper, particle swarm optimization (PSO) method is used to optimize a parameter estimation and distance based approach (DBA) is used to produce SRGM model selection ranking. The study concluded that the use of PSO for optimizing the SRGM’s parameter has provided more accurate reliability prediction and improved model selection rankings. The model selection ranking methodology can facilitate a software developer to concentrate and analyze in making a decision to select suitable SRGM during testing phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Optimize the Reliability of Software Reliability Growth Models using Modified Genetic Swarm Optimization

Software reliability is one of the key attributes to determine the quality of a software system. Finding and minimizing the remaining faults in software systems is a challenging task. Software reliability growth model (SRGM) with testing-effort function (TEF) is very helpful for software developers and has been widely accepted and applied. However, each SRGM with TEF (SRGMTEF) contains some und...

متن کامل

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

A Review on Parameter Estimation Techniques of Software Reliability Growth Models

Software reliability is considered as a quantifiable metric, which is defined as the probability of a software to operate without failure for a specified period of time in a specific environment. Various software reliability growth models have been proposed to predict the reliability of a software. These models help vendors to predict the behaviour of the software before shipment. The reliabili...

متن کامل

Combining Particle Swarm Optimization based Feature Selection and Bagging Technique for Software Defect Prediction

The costs of finding and correcting software defects have been the most expensive activity in software development. The accurate prediction of defect‐prone software modules can help the software testing effort, reduce costs, and improve the software testing process by focusing on fault-prone module. Recently, static code attributes are used as defect predictors in software defect prediction res...

متن کامل

The Use of Cuckoo Search in Estimating the Parameters of Software Reliability Growth Models

this work aims to investigate the reliability of software products as an important attribute of computer programs; it helps to decide the degree of trustworthiness a program has in accomplishing its specific functions. This is done using the Software Reliability Growth Models (SRGMs) through the estimation of their parameters. The parameters are estimated in this work based on the available fai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017